Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.354
Filtrar
1.
Sci Adv ; 10(12): eadk1250, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507482

RESUMO

RNA nanotechnology aims to use RNA as a programmable material to create self-assembling nanodevices for application in medicine and synthetic biology. The main challenge is to develop advanced RNA robotic devices that both sense, compute, and actuate to obtain enhanced control over molecular processes. Here, we use the RNA origami method to prototype an RNA robotic device, named the "Traptamer," that mechanically traps the fluorescent aptamer, iSpinach. The Traptamer is shown to sense two RNA key strands, acts as a Boolean AND gate, and reversibly controls the fluorescence of the iSpinach aptamer. Cryo-electron microscopy of the closed Traptamer structure at 5.45-angstrom resolution reveals the mechanical mode of distortion of the iSpinach motif. Our study suggests a general approach to distorting RNA motifs and a path forward to build sophisticated RNA machines that through sensing, computing, and actuation modules can be used to precisely control RNA functionalities in cellular systems.


Assuntos
Nanoestruturas , Robótica , RNA/genética , Microscopia Crioeletrônica , Oligonucleotídeos/química , Nanotecnologia/métodos , Corantes , Nanoestruturas/química , Conformação de Ácido Nucleico
2.
J Chromatogr A ; 1721: 464847, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38552370

RESUMO

In recent years, several small interfering RNA (siRNA) therapeutics have been approved, and most of them are phosphorothioate (PS)-modified for improving nuclease resistance. This chemical modification induces chirality in the phosphorus atom, leading to the formation of diastereomers. Recent studies have revealed that Sp and Rp configurations of PS modifications of siRNAs have different biological properties, such as nuclease resistance and RNA-induced silencing complex (RISC) loading. These results highlight the importance of determining diastereomeric distribution in quality control. Although various analytical approaches have been used to separate diastereomers (mainly single-stranded oligonucleotides), it becomes more difficult to separate all of them as the number of PS modifications increases. Despite siRNA exhibits efficacy in the double-stranded form, few reports have examined the separation of diastereomers in the double-stranded form. In this study, we investigated the applicability of non-denaturing anion-exchange chromatography (AEX) for the separation of PS-modified siRNA diastereomers. Separation of the four isomers of the two PS bonds tended to improve in the double-stranded form compared to the single-stranded form. In addition, the effects of the analytical conditions and PS-modified position on the separation were evaluated. Moreover, the elution order of the Sp and Rp configurations was confirmed, and the steric difference between them, i.e., the direction of the anionic sulfur atom, appeared to be important for the separation mechanism in non-denaturing AEX. Consequently, all 16 peak tops of the four PS modifications were detected in one sequence, and approximately 30 peak tops were detected out of 64 isomers of six PS bonds, indicating that non-denaturing AEX is a useful technique for the quality control of PS-modified siRNA therapeutics.


Assuntos
Cromatografia , Oligonucleotídeos , Fosfatos , RNA Interferente Pequeno/química , Oligonucleotídeos/química , Isomerismo , Ânions
3.
Nat Commun ; 15(1): 2549, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514662

RESUMO

Chemically modified nucleosi(ti)des and functional oligonucleotides (ONs, including therapeutic oligonucleotides, aptamer, nuclease, etc.) have been identified playing an essential role in the areas of medicinal chemistry, chemical biology, biotechnology, and nanotechnology. Introduction of functional groups into the nucleobases of ONs mostly relies on the laborious de novo chemical synthesis. Due to the importance of nucleosides modification and aforementioned limitations of functionalizing ONs, herein, we describe a highly efficient site-selective alkylation at the C8-position of guanines in guanosine (together with its analogues), GMP, GDP, and GTP, as well as late-stage functionalization of dinucleotides and single-strand ONs (including ssDNA and RNA) through photo-mediated Minisci reaction. Addition of catechol to assist the formation of alkyl radicals via in situ generated boronic acid catechol ester derivatives (BACED) markedly enhances the yields especially for the reaction of less stable primary alkyl radicals, and is the key to success for the post-synthetic alkylation of ONs. This method features excellent chemoselectivity, no necessity for pre-protection, wide range of substrate scope, various free radical precursors, and little strand lesion. Downstream applications in disease treatment and diagnosis, or as biochemical probes to study biological processes after linking with suitable fluorescent compounds are expected.


Assuntos
Nucleotídeos , Oligonucleotídeos , Oligonucleotídeos/química , Nucleosídeos , Guanina , Alquilação , Catecóis
4.
Nucleic Acids Res ; 52(7): e39, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477342

RESUMO

CRISPR-Cas systems with dual functions offer precise sequence-based recognition and efficient catalytic cleavage of nucleic acids, making them highly promising in biosensing and diagnostic technologies. However, current methods encounter challenges of complexity, low turnover efficiency, and the necessity for sophisticated probe design. To better integrate the dual functions of Cas proteins, we proposed a novel approach called CRISPR-Cas Autocatalysis Amplification driven by LNA-modified Split Activators (CALSA) for the highly efficient detection of single-stranded DNA (ssDNA) and genomic DNA. By introducing split ssDNA activators and the site-directed trans-cleavage mediated by LNA modifications, an autocatalysis-driven positive feedback loop of nucleic acids based on the LbCas12a system was constructed. Consequently, CALSA enabled one-pot and real-time detection of genomic DNA and cell-free DNA (cfDNA) from different tumor cell lines. Notably, CALSA achieved high sensitivity, single-base specificity, and remarkably short reaction times. Due to the high programmability of nucleic acid circuits, these results highlighted the immense potential of CALSA as a powerful tool for cascade signal amplification. Moreover, the sensitivity and specificity further emphasized the value of CALSA in biosensing and diagnostics, opening avenues for future clinical applications.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA de Cadeia Simples , Oligonucleotídeos , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/química , DNA/genética , Linhagem Celular Tumoral , Catálise
5.
Curr Protoc ; 4(3): e1013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483118

RESUMO

Universal solid supports are widely used in solid-phase oligonucleotide (ON) synthesis based on phosphoramidite chemistry. Herein, we describe the synthesis of hydrophobic universal linkers, namely phenanthrene ring-fused 7-oxabicyclo[2.2.1]heptane-2,3-diol derivatives (PT linkers), their coupling to solid supports [e.g., controlled pore glass (CPG) and polystyrene (PS)], and the use of the resulting PT-linker-modified solid supports in ON synthesis. PT linkers were synthesized in four steps from commercial materials and subsequently attached to CPG and PS resins through succinyl and diethylene glycol-containing spacers, respectively. Cleavage of the desired ON from the resins was accomplished under standard basic conditions, indicating that the reactivity of the PT linkers was comparable to that of conventional universal linkers. Furthermore, owing to their high hydrophobicity, the desired ON could be readily separated from impurities originating from the PT linker by reversed phase HPLC. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of phenanthrene ring-fused 7-oxabicyclo[2.2.1]heptane-2,3-diol (PT linker) derivatives Basic Protocol 2: Preparation of PT-linker-modified CPG and PS resins Basic Protocol 3: Solid-phase ON synthesis using PT-linker-modified solid supports and cleavage of ONs from resins.


Assuntos
Heptanos , Oligonucleotídeos , Oligonucleotídeos/química , Interações Hidrofóbicas e Hidrofílicas
6.
Nucleic Acids Res ; 52(5): 2174-2187, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38348869

RESUMO

Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information.


Assuntos
Hibridização de Ácido Nucleico , Oligonucleotídeos , DNA/química , Cinética , Oligonucleotídeos/genética , Oligonucleotídeos/química , RNA/química , Termodinâmica
7.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396686

RESUMO

Staudinger reaction on the solid phase between an electronodeficit organic azide, such as sulfonyl azide, and the phosphite triester formed upon phosphoramidite coupling is a convenient method for the chemical modification of oligonucleotides at the internucleotidic phosphate position. In this work, 4-carboxybenzenesulfonyl azide, either with a free carboxy group or in the form of an activated ester such as pentafluorophenyl, 4-nitrophenyl, or pentafluorobenzyl, was used to introduce a carboxylic acid function to the terminal or internal internucleotidic phosphate of an oligonucleotide via the Staudinger reaction. A subsequent treatment with excess primary alkyl amine followed by the usual work-up, after prior activation with a suitable peptide coupling agent such as a uronium salt/1-hydroxybenzotriazole in the case of a free carboxyl, afforded amide-linked oligonucleotide conjugates in good yields including multiple conjugations of up to the exhaustive modification at each phosphate position for a weakly activated pentafluorobenzyl ester, whereas more strongly activated and, thus, more reactive aryl esters provided only single conjugations at the 5'-end. The conjugates synthesized include those with di- and polyamines that introduce a positively charged side chain to potentially assist the intracellular delivery of the oligonucleotide.


Assuntos
Oligonucleotídeos , Fosfatos , Oligonucleotídeos/química , Azidas , Amidas/química , Ésteres
8.
Nucleic Acids Res ; 52(6): 3137-3145, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38324466

RESUMO

Custom oligonucleotides (oligos) are widely used reagents in biomedical research. Some common applications of oligos include polymerase chain reaction (PCR), sequencing, hybridization, microarray, and library construction. The reliability of oligos in such applications depends on their purity and specificity. Here, we report that commercially available oligos are frequently contaminated with nonspecific sequences (i.e. other unrelated oligonucleotides). Most of the oligos that we designed to amplify clustered regularly interspersed palindromic repeats (CRISPR) guide sequences contained nonspecific CRISPR guides. These contaminants were detected in research-grade oligos procured from eight commercial oligo-suppliers located in three different geographic regions of the world. Deep sequencing of some of the oligos revealed a variety of contaminants. Given the wide range of applications of oligos, the impact of oligo cross-contamination varies greatly depending on the field and the experimental method. Incorporating appropriate control experiments in research design can help ensure that the quality of oligo reagents meets the intended purpose. This can also minimize risk depending on the purposes for which the oligos are used.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Contaminação de Medicamentos , Indicadores e Reagentes , Oligonucleotídeos , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Oligonucleotídeos/química , Oligonucleotídeos/normas , Técnicas Genéticas , Indicadores e Reagentes/análise , Indicadores e Reagentes/normas , Indústrias/normas
9.
Angew Chem Int Ed Engl ; 63(13): e202317334, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323479

RESUMO

Xeno-nucleic acids (XNAs) are synthetic genetic polymers with improved biological stabilities and offer powerful molecular tools such as aptamers and catalysts. However, XNA application has been hindered by a very limited repertoire of tool enzymes, particularly those that enable de novo XNA synthesis. Here we report that terminal deoxynucleotide transferase (TdT) catalyzes untemplated threose nucleic acid (TNA) synthesis at the 3' terminus of DNA oligonucleotide, resulting in DNA-TNA chimera resistant to exonuclease digestion. Moreover, TdT-catalyzed TNA extension supports one-pot batch preparation of biostable chimeric oligonucleotides, which can be used directly as staple strands during self-assembly of DNA origami nanostructures (DONs). Such TNA-protected DONs show enhanced biological stability in the presence of exonuclease I, DNase I and fetal bovine serum. This work not only expands the available enzyme toolbox for XNA synthesis and manipulation, but also provides a promising approach to fabricate DONs with improved stability under the physiological condition.


Assuntos
Nanoestruturas , Naftalenossulfonatos , Ácidos Nucleicos , Tetroses , Ácidos Nucleicos/química , Oligonucleotídeos/química , DNA Polimerase Dirigida por DNA , DNA Nucleotidilexotransferase , Polímeros , DNA/química
10.
Chemistry ; 30(24): e202400137, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403849

RESUMO

Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , RNA/química , RNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Oligonucleotídeos/síntese química , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/metabolismo
11.
Nucleic Acids Res ; 52(6): 2836-2847, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412249

RESUMO

The field of synthetic nucleic acids with novel backbone structures [xenobiotic nucleic acids (XNAs)] has flourished due to the increased importance of XNA antisense oligonucleotides and aptamers in medicine, as well as the development of XNA processing enzymes and new XNA genetic materials. Molecular modeling on XNA structures can accelerate rational design in the field of XNAs as it contributes in understanding and predicting how changes in the sugar-phosphate backbone impact on the complementation properties of the nucleic acids. To support the development of novel XNA polymers, we present a first-in-class open-source program (Ducque) to build duplexes of nucleic acid analogs with customizable chemistry. A detailed procedure is described to extend the Ducque library with new user-defined XNA fragments using quantum mechanics (QM) and to generate QM-based force field parameters for molecular dynamics simulations within standard packages such as AMBER. The tool was used within a molecular modeling workflow to accurately reproduce a selection of experimental structures for nucleic acid duplexes with ribose-based as well as non-ribose-based nucleosides. Additionally, it was challenged to build duplexes of morpholino nucleic acids bound to complementary RNA sequences.


Assuntos
Simulação de Dinâmica Molecular , Morfolinos , Ácidos Nucleicos , RNA , Software , Morfolinos/química , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Oligonucleotídeos/química , RNA/química , Software/normas
12.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338910

RESUMO

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and multiple endocrine neoplasia-ß (MENß) are two long noncoding RNAs upregulated in multiple cancers, marking these RNAs as therapeutic targets. While traditional small-molecule and antisense-based approaches are effective, we report a locked nucleic acid (LNA)-based approach that targets the MALAT1 and MENß triple helices, structures comprised of a U-rich internal stem-loop and an A-rich tract. Two LNA oligonucleotides resembling the A-rich tract (i.e., A9GCA4) were examined: an LNA (L15) and a phosphorothioate LNA (PS-L15). L15 binds tighter than PS-L15 to the MALAT1 and MENß stem loops, although both L15 and PS-L15 enable RNA•LNA-RNA triple-helix formation. Based on UV thermal denaturation assays, both LNAs selectively stabilize the Hoogsteen interface by 5-13 °C more than the Watson-Crick interface. Furthermore, we show that L15 and PS-L15 displace the A-rich tract from the MALAT1 and MENß stem loop and methyltransferase-like protein 16 (METTL16) from the METTL16-MALAT1 triple-helix complex. Human colorectal carcinoma (HCT116) cells transfected with LNAs have 2-fold less MALAT1 and MENß. This LNA-based approach represents a potential therapeutic strategy for the dual targeting of MALAT1 and MENß.


Assuntos
RNA Longo não Codificante , Humanos , Metiltransferases/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/química , RNA Longo não Codificante/metabolismo
13.
ACS Synth Biol ; 13(2): 538-545, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38306634

RESUMO

DNA-based devices such as DNA logic gates self-assemble into supramolecular structures, as dictated by the sequences of the constituent oligonucleotides and their predictable Watson-Crick base pairing interactions. The programmable nature of DNA-based devices permits the design and implementation of DNA circuits that interact in a dynamic and sequential manner capable of spatially arranging disparate DNA species. Here, we report the application of an activatable fluorescence reporter based on a proximity-driven inverse electron demand Diels-Alder (IEDDA) reaction and its robust integration with DNA strand displacement circuits. In response to specific DNA input patterns, sequential strand displacement reactions are initiated and culminate in the hybridization of two modified DNA strands carrying probes capable of undergoing an IEDDA reaction between a vinyl-ether-caged fluorophore and its reactive partner tetrazine, leading to the activation of fluorescence. This approach provides a major advantage for DNA computing in mammalian cells since circuit degradation does not induce fluorescence, in contrast to traditional fluorophore-quencher designs. We demonstrate the robustness and sensitivity of the reporter by testing its ability to serve as a readout for DNA logic circuits of varying complexity inside cells.


Assuntos
DNA , Oligonucleotídeos , Animais , DNA/metabolismo , Hibridização de Ácido Nucleico , Pareamento de Bases , Oligonucleotídeos/química , Reação de Cicloadição , Corantes Fluorescentes/química , Computadores Moleculares , Mamíferos/metabolismo
14.
Nucleic Acids Res ; 52(4): 1896-1908, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38164970

RESUMO

We used structure guided mutagenesis and directed enzyme evolution to alter the specificity of the CG specific bacterial DNA (cytosine-5) methyltransferase M.MpeI. Methylation specificity of the M.MpeI variants was characterized by digestions with methylation sensitive restriction enzymes and by measuring incorporation of tritiated methyl groups into double-stranded oligonucleotides containing single CC, CG, CA or CT sites. Site specific mutagenesis steps designed to disrupt the specific contacts between the enzyme and the non-substrate base pair of the target sequence (5'-CG/5'-CG) yielded M.MpeI variants with varying levels of CG specific and increasing levels of CA and CC specific MTase activity. Subsequent random mutagenesis of the target recognizing domain coupled with selection for non-CG specific methylation yielded a variant, which predominantly methylates CC dinucleotides, has very low activity on CG and CA sites, and no activity on CT sites. This M.MpeI variant contains a one amino acid deletion (ΔA323) and three substitutions (N324G, R326G and E305N) in the target recognition domain. The mutant enzyme has very strong preference for A and C in the 3' flanking position making it a CCA and CCC specific DNA methyltransferase.


Assuntos
Metilação de DNA , Metiltransferases , Metiltransferases/genética , Metiltransferases/metabolismo , Oligonucleotídeos/química , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , DNA/química , Especificidade por Substrato , DNA (Citosina-5-)-Metiltransferases/genética
15.
Nucleic Acids Res ; 52(5): 2686-2697, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281138

RESUMO

We present here the high-resolution structure of an antiparallel DNA triplex in which a monomer of para-twisted intercalating nucleic acid (para-TINA: (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol) is covalently inserted as a bulge in the third strand of the triplex. TINA is a potent modulator of the hybridization properties of DNA sequences with extremely useful properties when conjugated in G-rich oligonucleotides. The insertion of para-TINA between two guanines of the triplex imparts a high thermal stabilization (ΔTM = 9ºC) to the structure and enhances the quality of NMR spectra by increasing the chemical shift dispersion of proton signals near the TINA location. The structural determination reveals that TINA intercalates between two consecutive triads, causing only local distortions in the structure. The two aromatic moieties of TINA are nearly coplanar, with the phenyl ring intercalating between the flanking guanine bases in the sequence, and the pyrene moiety situated between the Watson-Crick base pair of the two first strands. The precise position of TINA within the triplex structure reveals key TINA-DNA interactions, which explains the high stabilization observed and will aid in the design of new and more efficient binders to DNA.


Assuntos
DNA , Glicerol , Conformação de Ácido Nucleico , Pirenos , DNA/química , Guanina , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Pirenos/química , Glicerol/análogos & derivados , Glicerol/química
16.
Angew Chem Int Ed Engl ; 63(13): e202318863, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271265

RESUMO

The grooves of DNA provide recognition sites for many nucleic acid binding proteins and anticancer drugs such as the covalently binding cisplatin. Here we report a crystal structure showing, for the first time, groove selectivity by an intercalating ruthenium complex. The complex Λ-[Ru(phen)2 phi]2+ , where phi=9,10-phenanthrenediimine, is bound to the DNA decamer duplex d(CCGGTACCGG)2 . The structure shows that the metal complex is symmetrically bound in the major groove at the central TA/TA step, and asymmetrically bound in the minor groove at the adjacent GG/CC steps. A third type of binding links the strands, in which each terminal cytosine base stacks with one phen ligand. The overall binding stoichiometry is four Ru complexes per duplex. Complementary biophysical measurements confirm the binding preference for the Λ-enantiomer and show a high affinity for TA/TA steps and, more generally, TA-rich sequences. A striking enantiospecific elevation of melting temperatures is found for oligonucleotides which include the TATA box sequence.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Rutênio , Compostos Organometálicos/química , DNA/química , Oligonucleotídeos/química , Complexos de Coordenação/química , Temperatura , Rutênio/química
17.
Curr Protoc ; 4(1): e956, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38230581

RESUMO

The integration of fluorine atoms into biologically active organic compounds has proved to be a vital technique in small molecule drugs. This technique can substantially enhance crucial properties, including metabolic stability, lipophilicity, and bioavailability, often with a mere addition of a single fluorine atom or a trifluoromethyl group. Over the past few decades, this concept has also been applied in nucleic acid chemistry. A commonly employed 2'-OH substitution is the introduction of a 2'-deoxy-2'-fluoro (2'-F) group. The strong electronegativity of fluorine prompts the modified siRNA to readily adopt a C3'-endo conformation, resulting in significant advantages in terms of binding affinity. To enrich the toolbox of chemical modification of oligonucleotides, the replacement of the 2'-OH with the 2'-O-trifluoromethyl group has been developed in RNA analog synthesis. Oligodeoxynucleotides containing the 2'-O-trifluoromethyl group can greatly increase the thermal stability of DNA/RNA duplexes depending on the position and amount of the modification. Moreover, 2'-O-trifluoromethylated oligodeoxynucleotide also exhibited a slightly higher resistance to snake venom phosphodiesterase than the unmodified oligodeoxynucleotide. The 2'-O-trifluoromethylated oligonucleotides can emerge as a label to study RNA structure and function as well, or to develop DNA/RNA-based diagnostics. Hence, it is necessary to report an effective method for the synthesis, deprotection, purification, and characterization of oligonucleotides bearing a 2'-O-trifluoromethyl group. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 6-N-benzoyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl adenosine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 2: Preparation of 4-N-acetyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl cytidine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 3: Preparation of 2-N-isobutyryl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl guanine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 4: Preparation of 5'-O-dimethoxytrityl-2'-O-2-trifluoromethyl uridine 3'-(2-cyanoethyl N,N-diisopropyl) phosphoramidite Basic Protocol 5: Solid-phase synthesis of 2'-O-trifluoromethylated RNA analogs Basic Protocol 6: Deprotection and purification of 2'-O-trifluoromethyl-RNAs.


Assuntos
Nucleotídeos , Compostos Organofosforados , RNA , RNA/química , Flúor , Oligonucleotídeos/química , Oligodesoxirribonucleotídeos/química , DNA
18.
Mol Pharm ; 21(2): 491-500, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38214218

RESUMO

Antisense nucleic acid drugs are susceptible to nuclease degradation, rapid renal clearance, and short circulatory half-life. In this work, we introduce a modular-based recombinant human albumin-oligonucleotide (rHA-cODN) biomolecular assembly that allows incorporation of a chemically stabilized therapeutic gapmer antisense oligonucleotide (ASO) and FcRn-driven endothelial cellular recycling. A phosphodiester ODN linker (cODN) was conjugated to recombinant human albumin (rHA) using maleimide chemistry, after which a complementary gapmer ASO, targeting ADAMTS5 involved in osteoarthritis pathogenesis, was annealed. The rHA-cODN/ASO biomolecular assembly production, fluorescence labeling, and purity were confirmed using polyacrylamide gel electrophoresis. ASO release was triggered by DNase-mediated degradation of the linker strand, reaching 40% in serum after 72 h, with complete release observed following 30 min of incubation with DNase. Cellular internalization and trafficking of the biomolecular assembly using confocal microscopy in C28/I2 cells showed higher uptake and endosomal localization by increasing incubation time from 4 to 24 h. FcRn-mediated cellular recycling of the assembly was demonstrated in FcRn-expressing human microvascular endothelial cells. ADAMTS5 in vitro silencing efficiency reached 40%, which was comparable to free gapmer after 72 h incubation with human osteoarthritis patients' chondrocytes. This work introduces a versatile biomolecular modular-based "Plug-and-Play" platform potentially applicable for albumin-mediated half-life extension for a range of different types of ODN therapeutics.


Assuntos
Oligonucleotídeos , Osteoartrite , Humanos , Oligonucleotídeos/química , Células Endoteliais/metabolismo , Albuminas , Oligonucleotídeos Antissenso/química , Albumina Sérica Humana/metabolismo , Desoxirribonucleases
19.
Anal Methods ; 16(4): 576-582, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38189219

RESUMO

Reversible structural changes in DNA nanomachines have great potential in the field of bioanalysis. Here, we demonstrate an assembly strategy for quencher-free and tunable DNA tweezers based on 2-aminopurine (2-AP), avoiding the tedious fluorescence labelling step. The conformational state of the tweezers could be controlled by specific oligonucleotides (fuel or anti-fuel). Taking advantage of the local environmental sensitivity of 2-AP, the structural changes of the tweezers were easily tracked, and multiple cyclic switching of the tweezers between the open and closed states was achieved. In addition, the influence of oligonucleotide structure on the fluorescence properties of 2-AP was deeply explored. We figured out that the fluorescence of 2-AP was highly quenched by the base-stacking of natural bases in DNA oligonucleotides. Moreover, by comprehensively regulating the type of bases surrounding the inserted 2-AP site, a sensitive fluorescence response towards dynamic change can be obtained. This principle of quencher-free nanodevices based on 2-AP provides a convenient method for monitoring the structural changes of DNA nanomachines.


Assuntos
2-Aminopurina , DNA , 2-Aminopurina/química , Fluorescência , DNA/química , Oligonucleotídeos/química , Sequência de Bases
20.
Bioorg Med Chem ; 100: 117616, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295488

RESUMO

Herein, we report the synthesis of 2'-O-alkyl/2'-fluoro-N3-methyluridine (2'-O-alkyl/2'-F-m3U) phosphoramidites and their incorporation in DNA and RNA oligonucleotides. The duplex binding affinity and base discrimination studies showed that all 2'-O-alkyl/2'-F-m3U modifications significantly decreased the thermal stability and base-pairing discrimination ability. Serum stability study of dT20 with 2'-O-alkyl-m3U modification exhibited excellent nuclease resistance when incubated with 3'-exonucleases (SVPD) or 5'-exonucleases (PDE-II) as compared to m3U, 2'-F, 2'-OMe modified oligonucleotides. MD simulation studies with RNA tetradecamer duplexes illustrated that the m3U and 2'-O-methyl-m3U modifications reduce the duplex stabilities by disrupting the Watson-Crick hydrogen bonding and base-stacking interactions. Further molecular modelling investigations demonstrated that the 2'-O-propyl-m3U modification exhibits steric interactions with amino acid residues in the active site of 3'- and 5'-exonuclease, leading to enhanced stability. These combined data indicate that the 2'-modified-m3U nucleotides can be used as a promising tool to enhance the stability, silencing efficiency, and drug-like properties of antisense/siRNA-based therapeutics.


Assuntos
Ácidos Nucleicos , Uridina , Exonucleases/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/química , RNA/química , RNA Interferente Pequeno/química , Uridina/análogos & derivados , Uridina/química , Uridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...